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ABSTRACT This paper presents design and evaluation of a novel approach based on emotional learning to improve the 

speed control system of stator flux oriented control of induction motor. The controller includes a neuro-fuzzy system with speed 

error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The 

controller modifies its characteristics so that the critic’s stress is reduced. The comparative simulation results show that the 

proposed controller is more robust and hence found to be a suitable replacement of the conventional PI controller for the high 

performance industrial drive applications. 
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I. INTRODUCTION 
AC motor drives are used in multitude of industrial and pro-

cess applications requiring high performances. In high per-

formance drive systems the motor speed should closely fol-

low a specified reference trajectory regardless of any load 

disturbances, parameter variations and any model uncertain-

ties. In order to achieve high performance, field oriented 

control of IM drive is employed [1]. However, the controller 

design of such system plays crucial role in the system per-

formance. The decoupling characteristics of vector con-

trolled induction motor are adversely affected by the parame-

ters change in the motor. 

The motor control issues are traditionally handled by fixed 

gain proportional integral (PI) and proportional integral de-

rivative (PID) controllers. However, the fixed gain con-

trollers are very sensitive to parameter variations, load dis-

turbances, etc. So, the controller parameters have to be con-

tinually adapted. The problem can be solved by several adap-

tive control techniques such as model reference adaptive 

control (MRAC) [2], sliding mode control (SMC) [3], vari-

able structure control (VSC) [4] and self tuning PI control-

lers [5], etc. The design of all of the above controllers de-

pends on the exact system mathematical model. However, it 

is often difficult to develop an accurate system mathematical 

model due to unknown load variation, unknown and una-

voidable parameter variations due to saturation, temperature  

Variations and system disturbances. In order to overcome the 

above problems, recently the fuzzy logic controller (FLC) is 

being used for motor control purpose.  

The mathematical tool for the FLC is the fuzzy set theory 

introduced by Zadeh [6]. As compared to the conventional 

PI, PID and their adaptive versions, the FLC has some ad-

vantages such as:  

- It does not need any exact system mathematical 

      model 

- It can handle nonlinearity of arbitrary complexity  

- It is based on the linguistic rules with IF-THEN general 

structure which is the basis of human logic 

 However, the application of FLC has been facing some dis-

advantages during hardware and software implementation 

due to its high computational burden [7]. That is why so far 

the reported fuzzy logic works in motor drives [8-12] are 

mainly theoretical and based on either simulation or experi-

mental results at very low speed operating conditions. With 

referring to above mentioned approaches it is clear up that 

fuzzy-logic control utilization to design speed control system 

of induction motor, rapidly increasing because of the good 

performance of this controller both in nonlinear and complex 

systems. 

A fuzzy system includes a fuzzifier of a deterministic input 

signal with a membership function, reasoning in a fuzzy rule 

set using a proper inference method, and defuzzifier process 

to produce a deterministic output. Fuzzy rule base includes 

IF-THEN rules representing expert knowledge that makes 

decisions from input signals. This knowledge is provided by 

a control engineer who has performed extensive mathemati-

cal modeling, analysis, and development of control algo-

rithms for power systems. Thus, fuzzy controllers work well 

as supervisory controllers in conditions such as severe non-

linearities, time varying parameters and plant uncertainties. 

The proposed method in this study is the controlling model 

based on emotional processing in human beings brain that is 

latter method from above methods where the Critic gives 

rewards and punishments with respect to the states reached 

by the learner and is called “Brain Emotional Learning 

Based Intelligent Controller” (BELBIC). In real time control 

and decision systems, Emotional Learning is a powerful 

methodology due to its simplicity structure, low computa-

tional complexity, and independent from system model, 

online controlling and fast training. For these reasons, re-

cently there is rising tend to intelligent controllers and 

BELBIC to use in different systems such as [14-16]. Emo-

tional learning based intelligent controllers for Rotor flux 

oriented control of induction motor has been proposed [17]. 

This novel approach applied to improve the speed control 

system of stator flux oriented control of induction motor. 

The control system combined from a neuro-fuzzy controller 

and a fuzzy critic which evaluates the motor speed condition 

and then produces an appropriate signal to controller learn-

ing.
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The vestige of this paper is organized as follows. In section 

2, an overview about stator flux oriented control of induction 

motor are explained. Section 3 describes the emotional learn-

ing concept. Section 4 characterizes Neuro-fuzzy controller 

scheme based on brain emotion and some mathematical 

Fundamentals. Then section 5 presents architecture of emo-

tional learning based intelligent controllers (ELIC) for Stator 

flux oriented control of induction motor. In section 6 the 

simulation results that compare the proposed method to PI 

Controller designs is illustrated And finally, conclusions and 

viewpoints based on comparing results are exposured in sec-

tion 7. 

II. STATOR FLUX ORIENTED CONTROL OF INDUCTION 

MOTOR 

In this paper stator flux oriented control will be applied to 

induction motor. The effects of magnetic saturation are ne-

glected. Expressions for the electromagnetic torque of induc-

tion machine is proportional  to the magnetizing flux (cur-

rent) and torque producing stator current component (isq); 

thus from (1): 

 qsme iPL
2

3
T                                                                (1)  

Where P is the number of pole pair and Lm magnetizing in-

ductance of the machine, │φs │ is obtained from (2):  

dsss iL                                                                           (2) 

Where Ls, is self inductance of the stator. 

II.1. Stator flux estimation       

The angle of stator flux doesn't obtain from the terminal of 

machine directly. The required equation for estimate flux 

stator obtained as (3) – (6): 

sDsDssD
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Where VsD and VsQ are components of stator voltage in sta-

tionary reference frame and θs is angle of stator flux. 

Decoupling of q and d axis current components 

rotor voltage equation with assumption φs=Lsims is expressed 

in the stator flux oriented reference frame (7): 

0

( )( )

s s s s

r r r r r m s

s s

ms mr r r m s

d d
V R i L i L i

dt dt

j L i L i 
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                       (7) 

Where r  is the rotor speed and Rr and Lr are the rotor re-

sistance and rotor self inductance.  

Expression of magnetizing flux yields simply as (8): 
s s

m r s s sL i L i                                                              (8) 

By the substitution of (8) into (7) and by considering that, 

since the rotor winding can be considered as short circuited 

winding, yields: 

 
Fig.1.   The proposed Emotional Controller based IM drive. 
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Decomposition of (8) into its real and imaginary axis 

component gives: 
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From relations (10) and (11) are seen that iqs have undesira-

ble effects on transient component of ids and so they can’t 

control independently. For removing effects of coupling, isd 

is expressed as (15):  

dxsdsd iii 


                                                          (15)   

So for remove the unintended effect of iqs on the magnetizing 

current component idx is obtained from relations (10) and 

(11) as follow: 
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With this separation axis component d and q, the flux con-

troller (PI), only see sdi


that it does not have any coupling 

terms (figure 1).  

 

The conventional PI controller is one of the most common 

approaches for speed control in industrial electrical drives, 

because of its simplicity, and the clear relationship existing 

between its parameters and the system response specifica-

tions. The conventional PI controller fixed gains may per-

form well under some operating conditions but not all, be-

cause of  complexity, time variant, nonlinearity and model 

uncertainties. In order to improve the performances of the 

indirect vector control system, a novel approach based on 

emotional learning is being used to be the speed controller. 

The schematic diagram of the ELIC-based indirect vector 

control of IM is shown in Fig.1. The motor parameters are 

given in the Appendix. 

III. EMOTIONAL LEARNING 

There are three learning methods for neural networks charac-

terized by the information source used for learning and clas-

sified with respect to the degree of information of the source. 

These learning methods are supervisored learning, unsuper-

visored learning, and reinforcement learning. Emotional 

learning is a type of reinforcement learning. It is done fuzzi-

ly and continuously in human being, in a way that the learn-

ing process is done through emotional signals. This signal is 

produced by the brain based on the person’s behavior. 

Whenever the person’s behavior is satisfactory, the stress is 

reduced in the person and no correction of the behavior is 

needed and as a result the value of the produced stress signal 

is small. If the person’s behavior is not satisfactory, the 

stress is increased and as a result, the value of the stress sig-

nal is higher in order to improve the person’s behavior.  

Although, reinforcement learning and emotional learning 

have many similarities in training the controller systems, 

there also exist some differences in a way that the critic 

which is used in emotional learning has a continuous per-

formance producing the learning signal in the range of [-1,1]. 

If the system operation is satisfactory, the value of this signal 

will be close to zero and if it is unsatisfactory its value is 

increased and based on the type of operation it will be close 

to 1 or -1. But the critic which is used in reinforcement 

learning just analyzes success and failure in the system oper-

ation and based on this analyzing the learning signal is pro-

duced in order to train the controller (0 for failure in the sys-

tem operation and 1 for success in the system operation). 

IV. EMOTIONAL LEARNING CONTROLLER 

Fig.2. shows the emotional learning controller structure 

which is used in this paper. The critic produces an emotional 

signal for the controller by analyzing the system perfor-

mance. Controller amends its parameters based on this emo-

tional signal and the current error in the system output in 

order to improve system performance. 

 

 

Fig.2.   Structure of emotional learning methodology. 

In this structure, because updating the controller parame-

ters is based on the emotional signal, the system response is 

so dependent on the critic performance. Thus, the most im-

portant part in the control system is to design the critic. In 

this section, at first the neuro-fuzzy controller, then the oper-

ation of emotional critic, and finally the method of teaching 

the neuro-fuzzy controller is explained. 

IV.1. Neuro-fuzzy controller 

Fuzzy systems are knowledge-based or rule-based systems 

[13]. The heart of a fuzzy system is a knowledge base con-
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sisting of the so-called fuzzy IF-THEN rules. A fuzzy IF-

THEN rule is an IF-THEN statement in which some words 

are characterized by continuous membership functions. The 

starting point of constructing a fuzzy system is to obtain a 

collection of fuzzy IF-THEN rules from human experts or 

based on domain knowledge. The next step is to combine 

these rules into a single system. In fact the fuzzy system can 

be viewed as performing a real and nonlinear mapping from 

an input vector X=[x1, x2… xn]
T R

n
 to an output vec-

tor ( )y f X   R
m
 (.

T
 denotes transposition; n and m are 

input and output vector dimensions). Different fuzzy systems 

use different principles for this combination. There are two 

types of fuzzy systems that are commonly used in the litera-

ture: Takagi-Sugeno-Kang (TSK), and fuzzy systems with 

fuzzifier and defuzzifier. 

The model which is used here to design the neuro-fuzzy con-

troller is of TSK type. Consider a multiple-input single-

output (MISO) fuzzy system consisting of N rules as fol-

lows: 

Rj (jth rule): if(x1 is Fj1) and (x2 is Fj1) and (x2 is Fj2) and  and 

(xn is Fjn) then cj=gj(X) 

Where j=1, 2, . . . , N; xi(i=1,2, … ,n) are the input variables 

of the fuzzy system, Fji is characterized by its corresponding 

membership function ( )ji iF x , cj is the consequence of the 

jth rule and gj :  Rn  Rm. Each rule Rj, can be viewed as a 

fuzzy implication by the inference engine.  

The antecedent fuzzy set (fuzzy Cartesian product) of each 

rule 1 2 ... nF F F     is quantified by the t-norm operator 

which may be defined as (18), the min-operator or the prod-

uct operator. 

                                                                                          

(18) 

       

 

 

 

The defuzzification is performed using (19), where 
j the 

firing strength of the antecedent is part of the jth rule and is 

given by (20). 
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In TSK fuzzy systems, the consequent part of rules is giv-

en by (21). 
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Where where oja and ija
 
are the coefficients that should 

be set at design stage or tuned during the corresponding 

learning procedure. Implementing a fuzzy inference system 

in the framework of an adaptive neural network results in a 

six layer network in which each layer serves as one part of 

the equivalent fuzzy system. Fig.3. shows a sample neuro-

fuzzy system equivalent to a two-input and one-output TSK 

fuzzy inference system which has two linguistic labels for 

each input and therefore four rules in its rule base. 

In the first layer, which is shown by I, the input is normal-

ized to the range [-1,1]. In the second layer, which is shown 

by MF, by using the membership functions the input varia-

bles are transformed from real variables into linguistic varia-

bles. The third layer which is shown by c, multiplies the var-

iables received from layer two and provides the antecedent 

part of the fuzzy rules     1 1 ...
j jnF F nx x   . In the 

fourth layer, which is shown by N, the term 
1

n

j jj
 

 is 

calculated which expresses the ratio of firing strength in the 

jth node to the sum of all firing strengths of the rules.  

 

Fig.3.   Neuro-fuzzy structure equivalent with a MISO TSK 

fuzzy inference system. 

In the fifth layer, which is shown by T-S, by using the nor-

malized data of the previous layer and the arranged TSK 

rules in this layer, the output of the above rules are calculat-

ed. Finally, the sixth layer is a defuzzifier layer and the out-

put is calculated based on (19). 

IV.2. Emotional Critic 

The performance of the critic is similar to the emotional sec-

tion of human brain, in a way that it produces a learning sig-

nal in order to update the neuro-fuzzy controller weights by 

analyzing the system performance. This analysis is done by 

using the system error and its derivation signals. It means 

that position of system output and also the system behavior 

are effectual on the emotional signal. The critic is designed 

by implementing PD behavior via fuzzy systems. The critic 

which is designed by PD controller has a linear performance 

and it is not suggested to be used for non-linear systems. But 

the critic which is designed by neuro-fuzzy controller has a 

proper performance in non-linear systems. In this article, the 

expert fuzzy system model is used to design the critic.  

Considering the fact that controller performance correction 

should lead to reduction of critic stress, the cost function is 

defined as follows: 

1 2 1... ( ,..., )n nF F F x x      
1 1 2 2min[ ( ) ( ) ... ( )]n nF x F x F x     

or  

1 1 2 2( ) ( ) ... ( )n nF x F x F x     
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E k r
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In which rj is the output emotional signal of critic j, kj is the 

weight of this signal, and m is the number of system outputs 

which also defines the number of critics used in the system.  

IV.3. Emotional learning  

As it is mentioned in section VI-B, the main goal of emo-

tional controller is to update the neuro-fuzzy controller pa-

rameters in order to reduce the critic stress based on cost 

function in equation 22. As a result steepest descent method 

is used. 

21

2
E r                                                                           (22) 
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In which   is controller learning rate and   is the tunable 

parameter of the controller. By using the chain rule in order 

to calculate equation 20 we will have: 

. . .
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In which u is the control signal. 

TABLE+I CRITIC FUZZY RULE BASE 
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Fig.4.   The membership functions of the corresponding 

linguistic variables of the Neuro-Fuzzy Controller. 

In the above equation J is system Jacobean. Jacobean of the 

systems can be replaced by their symbols. As the system 

input is increased its output will increase too, as a result the 

system Jacobean sign is positive in this system. 
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Because the critic operation is fuzzy 
r
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a. Speed Error Derivative 

 
b. Speed Error 

 

Fig.5.   Fuzzy critic membership functions: (a) input 

membership functions and (b) output membership unctions. 

 

 

 

ced by its symbol. Considering the fact that increase in the 

system error leads to increase in the stress, the sign of the 

above equation is positive. The system error is also calculat-

ed by using .refe y y   

. .
u

r 



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
                                                                  (26)              

In the introduced neuro-fuzzy controller, control signal u 

of the previous sub-sections is calculated by combining 

equations 19 and 21 according to equation 27. 
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Now based on equation 26 controller parameters are up-

dated based on equations 28 and 29. 
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V. THE PROPOSED SPEED CONTROL SYSTEM OF STATOR 

FLUX ORIENTED CONTROL OF INDUCTION 

The structure of the designed emotional controller for 

speed control system of stator flux oriented control of induc-

tion is shown in Fig.1. This structure is made of neuro-fuzzy 

controller and critic sections. The neuro-fuzzy controller 

section produces command signal in order to speed control 

system of stator flux oriented control of induction. As it was 

mentioned earlier the structure of this controller is of TSK 

type and speed error signal and its derivation are used as the 

inputs of this controller. In this controller three linguistic 

variables (Negative (N), Positive (P) and Zero (Z)) are used 

in each input in order to tune the rules and according to this 

9 rules are formed for the controller. Membership functions 

of linguistic variables are shown in “Fig. 4”. 
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It is obvious that sigmoid functions are used for variables N 

and P, i.e. 1( ) [1 exp( ( ))]ji i ji i jiF x a x c     and Gaussian 

function, i.e. 2( ) [ (( ) / ) ]ji i i ji jiF x x c     is used for variable 

Z. In the above equations cij is the center of function 
ji  is 

the function variance and aij is the curve inflection function. 

The main sector in emotional controller is the critic. In this 

controller expert fuzzy model is used in order to design the 

critic. Speed error signal and its derivation are used as critic 

inputs in order to analyze system performance. Five linguis-

tic variables are used for each of the above inputs; their 

membership functions are shown in Fig. 5-a. and Fig. 5-b. 

As it is seem in the figure, Gaussian function is used for var-

iables SP, SN and Z and Sigmoid function is used for varia-

bles BP and BN. According to the above linguistic variables, 

25 different states can be defined in the critic and 25 differ-

ent rules are tuned based on them in order to form the critic 

stress in the then part of these rules. The above rules are 

shown in table 1 and also Fig. 5-c. shows the critic stress 

signal derived from these rules. For example if the speed 

error signal and its derivation are BP (Big Positive), the sys-

tem performance is unsatisfactory and the critic stress will be 

VBP; contrary to that if the speed error signal is SP (Small 

Positive) and its derivation is SN (Small Negative) the sys-

tem performance is satisfactory and the critic stress is also 

reduced.  

Finally by applying the stress signal to the neuro-fuzzy con-

troller, the controller parameters are tuned by using SD 

method in order to optimize system performance. 

VI. RESULTS AND DISCUSSIONS 

Several tests were performed to evaluate the performance of 

the proposed ELIC based vector control of IM drive system 

simulated. The speed control loop of the drive was also de-

signed, simulated implemented with PI controller, in order to 

compare the performances to those obtained from the respec-

tive FLC based drive system. The speed responses are ob-

served under different operating conditions such as sudden 

change in command speed, step change in load, etc. Some 

sample results are presented in the following section. The PI 

controller is tuned at rated conditions in order to make a fair 

comparison. Fig.6. show the simulated starting performance 

of the drive with PI and ELIC based drive systems, respec-

tively. Although the PI controller is tuned to give optimum 

response at this rated condition, the emotional controller 

yielded better performances in terms of faster response time.  

Fig.7. show the speed responses of the drive system using PI 

and emotional controller, with step change in reference 

speed. It is evident from Fig.7, that the proposed ELIC based 

IM drive system can follow the command speed without any 

overshoot and steady state error. So this intelligent controller 

is not affected by the sudden change of the command speed. 

Thus, a good tracking has been achieved for the ELIC. 

Whereas, the PI controller based drive system is affected 

with the sudden change in command speed.  
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Fig.6.   Simulated starting responses of the drive with ELIC and 

PI 
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Fig.7.   Simulated speed responses of the drive due to step 

change of the reference speed ELIC and PI. 
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Fig.8.   Simulated speed responses of the drive due to applying  

and removing  the full load ELIC and PI. 
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Fig.8. show the speed responses for step change in the load 

torque using PI and emotional controller. The motor starts 

from standstill without load and at t=1 sec, a sudden full load 

is applied and at t=2 sec, full load is removed. The motor 

speed follows its reference with zero steady state error and 

fast response using ELIC. It is to be noted that the speed 

response is affected by the load conditions. This is the draw-

back of PI controller with varying the operating conditions. 

These figures also show that the ELIC based drive system 

can handle the sudden increase in command speed quickly 

without overshoot, undershoot and stead-state error, whereas 

the PI controller based drive system has steady-state error 

and the response is not as faster as compared to the ELIC. 

Thus, the proposed emotional controller based drive has 

been found superior to the conventional PI controller based 

system. 

VII. CONCLUSION 
A novel Emotional learning based intelligent controllers to 

improve the speed control system of stator flux oriented con-

trol of induction motor has been presented in this paper. The 

ELIC has been designed for speed control loop. The simulation has 

been carried out using SIMULINK Toolbox. The above control-

ler is an intelligent controller of reinforcement learning type 

which uses a fuzzy critic in order to assess the system per-

formance and tuning parameters of the controller. Since exact 

system parameters are not required in the implementation of the 

proposed controller, the performance of the drive system is robust, 

stable and insensitive to parameters and operating condition varia-

tions. In order to prove the superiority of the ELIC, a conventional 

PI controller based IM drive system has also been simulated im-

plemented. It is concluded that the proposed Emotional learning 

based intelligent controllers has shown superior performances 

over the PI controller. 

Appendix 

Specifications of induction motor: 
5hp, 3-Phase, 4-Pole, Y-Connected, 460 V, 60 Hz, 1800 rpm, 

squirrel cage induction motor. 
Rs = 1.115 Ω, Rr =1.083 Ω, Ls =0.0059 H, L, = 0.0059 H, Lm = 

0.2037 H, Jm = 0.01 Kg.m2, Bm = 0.02 (N.m.s). 
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